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SUMMARY
A comparison of estimation procedures involving oné¢ preliminary test
of significance (PTS) with another involving two preliminary-tests for the
estimation of the true error variance in a analysis of variance mixed model
situation is presented. The bias and mean square error of a sometimes pool
estimation (STPE) procedure using one PTS has been obtained and its
relative efficiency over never pool estimation (NPE) procedure has been

compared with the results of another STPE procedure using two PTS which
has been studied separately.

Key words : PTS, Sometimes pool estimation (STPE), Never pool
estimation (NPE).

Introduction

The proposed study pertains to a comparison of two conditionally specified
inference procedures for which detailed bibliography may be seen in Bancroft
and Han [2] and Han, Rao and Ravichandran [3].

1.1  Application

The present study relates to a experimental design model for a split plot
in a time experiment in which some of the factors are fixed and the remaining
random, These experiments are analogous to usual split plot experiments and
are characterised mainly by the feature that observations made are on the same
whole unit over a period of time. Such situations arise frequently in experiments
of forage crops (Steel and Torrie [5]) or with perennial and semi-perennial plants
such as orchard and plantation crops like sugarcane, bananas, tropical fodder
grasses etc. Considering a mixed model situation, one is interested in an

estimator of the error variance when uncertainties regarding the parameters

involved in the model specification exist.
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1.2  Problem to be solved

Ali and Srivastava [1] considered the following conditionally specified mixed
ANOVA model corresponding to above mentioned split plot in time experiment
having frequent use in forage crops. ' ’

Yip= B0+ B+ + it (o 7)+ (Br)pet €
where Y, = yield on the k™ cutting of the j'h variety in the i™ block,
i=1,2;.,n0j=1,2,.,5:k=1,2,..,t; U is the true mean effect , o, is the
random block effect and Bj, T, are the fixed effects of varicties and cutlings
respectively. The cuttings effect, ie. 7, is of main interest for which the

abridged ANOVA table is given as
Table 1. Mixed model abridged ANOVA for a split-plot in the experiment -

Source of variation Degrees of freedom Mean Expected mean squares
, . squares
Treatments ng=t—1 : V4 o% = 025 +s ()'3‘“ +r 5[03]
(Cuttings)
) = 0% (1+2}.4/ﬂ4)
True Error np= -1 =1 Vi o= o +s0%,
(Cuttings x Block) » :
Doub.tful ErrorI'I.. n=(t-1)(-1) V, 0%_: 0%5‘*”[07[3\]
(Cuttings X Varicties) 2
= oy (1+2Ay/ny)
Doubtful Error I n=0-NGE-1) -1 Vi o*=d* -
. . 1 €
(Cuttings x Variety
X Block)

In Table 1, A, and A, are the non-centrality parameters. It may be noted
that model (1.1) applies to any three-way cross classification lay out where
any two factors may be fixed effects and the third being random.

The problem to be solved here is to find an estimator of 03, the true error
variance, pertaining to the estimation situatioin when (i) the cutting X variety
interaction already exists, i.e., oéf > 0 (or 0% > 071') : e.2. in case of forage crops
usually different varieties respond differently to different cuttings; and (ii) the
doubtful situation is that 0(2” may be equal to zero. The other estimation situation
aries out of the test proposed by Ali et. al., where the doubtful conditions are
that (a7), andlor (B 'r)Jk may equal 1o zero. i.e. oﬁf may be equal 10 zero
(see Teble 1). In other words, the former situation corresponds 1o only one

gy
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doubtful condition og 2 012 while the latter to two doubiful conditions o§ and/or

0222 012. In general, the assumptions corresponding to usual (never pool)
, 2. 2 2 2

estimator V, of 0," is 0, # 0,"# o

The present paper is concerned only with the first estimation situation. The
estimation for the second ‘situation has been studied separately (Singh er. al.,

[4], whose results will be used here for the sake of comparison. The doubtful

condition existing in the first estimation situation is resolved by performing
the preliminary test H : 0§=. of (ie. 6, =1.0) vs H;: 0§>of (8;,>1.0)
based on which the final test of treatment differences is made in another study
by testing H,: oi= ogl(i.e. A, = 0) against H,: of>o§ (i.e. 2,>0), where
042 is the true treatment variance. In this study the same preliminiary test is
used in the estimation procedure for estimating 03. The estimation situation
arising out of the doubtful conditions was resolved by the preliminiary tests
Hy, : 0§= of (ie. 6;,= 1.0) vs H,, : o§>of (65,>1.0) and H,: o§= of
(ile.d,= 0) vs H,,: o§> 0? (i.e. &, > 0) in succession (Singh er. al., [4], based
on the outcomes of which Ali and Srivastava ﬁnally tested H; vs H,.

Thus, using the similar sometimes pool procedure as adopted by Ali

el. al. and Singh ef. al., a sometimes pool estimator V* for estimating 03 :

corresponding to the above mentioned first estimation situation is proposed as
follows :

Vy if V3/V, 2 F(ny,n,;0,)

V= Vi3 if () V3/V, <F(ny,n, 5 o)) _ 1.2
and (i) V,/V;; 2F(n,, 0,5 ; @)
The estimaor V corresponding to second estimation situation as studied
by Singh et. al. [4] is ' .

( V, ifVy/V,2F(u,,n, ;)

Vis () Vy/v, <F(ny,n; )

and (i) V,/V 3 2F (u,, Npj; )
Vig if () Vy/v, <F(uy,n; )

and (ii) V,/V 3 <F(n, N;j; o)

where
Vis= @V, +n0, V.)/@, +0,), V. = (0, Vi+0, V,+10, V,)/(0, +n, + n,)

(1.3)-
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and F(n;,n;; o) is the upper 100 o, % point of the central F-distribution
with (n, nj) degrees of freedom.
In this paper we study the bias, mean square error and relative efficiency

of V¥ with respect to V, and compare their numerical results with those of
V extracted from Singh ef. al. [4]. ‘

1.3  The motivation for proposing V*:

The motivation behind proposing V* is that, usually different varieties
of forage crops respond differently to different cuttings, which indicates the

rior existence of cuttings X variet interaction i.e., o>_>0 (02> 02). In this
y BT 2 1

case, when we have the doubtful situation o§ P of then it is likely that one
preliminary test estimator V* inay be more appropriate for estimating the error
variance 032 than V since the latter is an estimator meant for the more general

parametric situation o§ and /or ci 2 of. Therefore, comparision of both the
specific situation estimator V#* and the general situation estimator V vis-a-vis
the usual estimator V3., which corresponds to the situation 0§¢ oi, 0?, has
also been made. '

9. Mean Value, Bias and Mean Square Error of Estimator V* along
with its Efficiency relative o never pool Estimator V3
The mean value E(V*) of estimaor V¥ is given by
E(V)=E V, Vy/V, 2 F (n,,n,; )] Pr V,/V,2F (n;,n;; a,)]
+ E[V,; | Vy/V, <F(n,,n,ia)] Pr[Vy/V, < F (n,, 0,5 )] (2.12)
or, say E(V)= E;P[+EP, (2.1b)

where E = E[V,]-Vy/V, 2F (85,0 4l
g

P} = Pr [V,/V, 2F(ny,n;; )]
and  E, P, is similarly defined.

For maintaining the continuity of presentation the derivations for E; P,

E, P; aud E; P; have been relegated to the appendix. The expressions derived
there are substituted in (2.1) to get the mean value E (V¥). Then the bias is
obtained by BIAS(V¥) = E (V¥) = 03,
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The mean square error of the estimator V* is defined as
MSE (V)= E(V'-a3l= E(V?)-202 E(V")+ (0% (22)

In the r.hs. of equation (2.2) the only unevaluated quantity is E (V*?), given
og. Therefore, to evaluate E(V*?) we can express it as in case of E (V¥) given
by (2.1). Thus,

E(V?)= E}, P; +E,, P} (2.3)
where : E;, = E[(V}I (V3/V))2F (0, n;; ),
Pl=Pr [(V/V)2F(n,n,; )]

and E,, P; is similarly defined. The dervied results from the appendix are used

in (2.3) to get the exression for E (V™). Then MSE(V") is evaluated from (2.2)
using the final expressiotis for E(V*?) and E (V°).

The relative efficiency of the estimator V* with respect to the never pool
estimator v, is given by RE. = MSE(V,)/MSE (V") =
{200,"Y"/n,)/MSE(V"),  sice  MSE(V,) =E (V) - G} E (V)
= (@2’ +{2 (022‘)2/113 3

3. Discussion of Resulls

In order to facilitate the comparison of estimators V* and V we have
considered the three scis of degrees of freedom
n=2,0=2 n =2, n,= 4 and n, = 10, 1, = 2 for calculating the results of
\'Al corresponding to the three sets n =2 n,=2, =2 0,=2, 0,=2,
n,= 4 andn, = 10, n, = 10,0, = 2 for V, whose reasults were extracted from
Singh e/. al. [4]. Three values of preliminary levels of significance were
considered, i.e. o, = o= 0 = 0.50, 0.25 and 0.05, for numerical investigation.
However, the first choice, o=0,=a-= 0.50, was found to be most suitable
from the point of view of relative efficiency. This was further confirmed by
the same choice of « obtained in a separate study of Singh er. al. [4]. Therefore,
for brevity, the tables for «, = a,= o« = 0.50 have only been given. The resuits

of V" and V have been combined and presented in Tables A.1 to A.3 of the
appendix.
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3.1. - Bias

A perusal of golumns fifth and sixth of Tables A.1 through A.3 reveals
that the bias of V" it negative for all sets of degrees of freedom and for all
the values of 6,,. However, with the increase in the variance ratio 6, the

numerical value (i.e. ignoring sign) of bias goes on increasing.
Now, if we compare Tables A.1 with A.3 and Tables A.1 with A2, we

find that the numerical bias of V" increases as n, increases from 2 to 10 or
n, increases from 2 to 4 for different fixed values of 6.

To compare the bias of v* with that of V, the entries against BIAS of V
corresponding to A, >0 have been cpnsidred, which arises from the assumption
that oéT >0or 02 > of. Thus, on comparing the corresponding entries we find

that the bias of V' is always negative and that of V is always positive. However,
on making numerical comparison (ignoring sign), it is found that the bias of
V" is numerically less than that of V for 6,, = 1 when A, is moderate to high.

For 6, > 1 the bias of V' is numerically more than that of V except when
n,, n, are very small, A, is high and 8,, is moderate where V' is again less
biased.

32 Mean squre error and relative efficiency

The entries for the mean square errors and relative efficiency have been
presented in the columns seven to cleven of Tables A.l through A.3. Since
the effect of mean square error of V° manifests itself through its relative
‘ efficiency (RE) over V,, the numerical discussion will be confined to the RE
~ only. - :

It can be seen from Tables A.1 to A.3 that for all sets of degrees of freedom
under study, the relative efficiecy, € v, V,) %, decreases with the increase of
variance ratio 8, in its entire range of values considered except 6, = 1.0.

For a given value of 8,,, an increase in the true error degrees of freedom

n, decreases the relative efficiency of V™ with respect of V, (see last columns
of Tables A.1 and A.2) This might be due to smaller decrease in MSE (V)
compared to the decrease in MSE vy as n, inicreases from 2 to 4. However,
the efficiencies of both the estimators V' and V3 almost remain the same with
the increase in the doubtful error- d.f. n, as this increase causes a negligible

decrease in e (V', V,) %. It may be noted that the increase in n, does not matter

in case of V.
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} As regards the comparision of the estimators V° V, the entries of
\ e (V" V.)% and e (V, V,) % in Tables A.1 to A.3 are compared in the same
l

' way as in case of bias. It is observed that for 8,, = 1, the values of

’ e (V" V,) % are higher than those of e (V, V,) % for moderate to high values

of )\2 For 6,, > 1, the values of e (V*, V,) % are found to less than those of
e (V,V,) % except the cases when n;,n, are very small, 9, is moderate and

A, is high for which case the values of e (v, V,) % are again higher.

When the interaction (B T)j.k, say, cuttings x varieties, already. exists, e.g.,

| when different varieties of fora ge crops respond differently to different cuttings,
then the proposed estimator V* should be preferred under following situqations.
For a situation when the variance of true error seems to be almost equal to
that of the first doubtful error, V'» is preferable to both V and V, on account

: of better efficiency. Similarly, when the degrees of freedom for the true error

| (ny) is at premium, say less q:au 2 irrespective of those of first doubtful error
(n,)), then also the estimator V* should be preferred to both V and V,. In addition
to this, when the true error variance seems to be moderately higher than the
first doubtful error variance, the second doubtful error variance is higher than
the first doubtful error variance, and the degrees of freedom available for these
crrors are very few, say less than or equal to 2, then again V' is preferable
to V.,

[ ‘ 4.  Conclusion
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APPENDIX
A.1  Joint density function :
The joint density of V, and V, is given by
f(V,,Vy)= Avli'"n“ vﬁ":" exp [-1 {0, V,/0,>+0; V;/05"}]
(A.1a)

1 1

(0, /02" (/0,202 '

where - A= T N N : (A.1b)
27 ™ +n)l (Enl)r GQny

- Introducing the transfomﬁtions
u, = 0y Vy/(0, V) 65),u,= 1 V,/(2012) (A2)
where 0 < .ul <,0< u, <=8, = 032/012_ the joint density function can be
rewritten as

1 1
f(u,u)= A, u2™! uzi(“u““s)“l exp [~; {2u, (1 +up}l (A3a)

where and 0 u; < 0,0 Y < (A.3b)

1
1571 ST/
[GuplGny)
A2 Derivation of Ej*P1*, E2*P2* and E3* P3* :

To derive E; PI we express V, and {(V3/V1)2 F(n,n;: al)}in ‘terms of
u’s, so that

E;P{= E{(20;/ny) uu, | u > a} Pr(u 22)

= r r (2 0 /113) u, u, f(u,u,)du,dy (A.4a)
u = 8 u =
where a= u}/8,;, uy= (n,/n)) F(ng, 0,3 @) ' (A.4b)

Then we apply the transformations

z=u, (1+u,), sothat u, = lfu" du = T
" 1

, sothat u; = ﬂ__L) du, = _QX (A.5)

: 1
and y=
) 1+ Ul y/
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in succession to integrate out u, and u,. Then, we get

* p* 2 032 e 1 1 1. 1. 11y

E Pi=A,; o G @y +ny)+ 1B x, G050+ 1)=A, Bx, Gny, 505+ 1)

. (A62)
- 20, l_(% (@, +ny)+1) 1
where A,= N N and x,= T (A6Db)
n, [ Gny) I-(-z- n,) l+a
We can also show that (A.6 a) reduces to

E;Pj= o Ix, Gy, 305+ 1), where L, B, (p, /B (p. @ (A. 6d)

The expression for E; P; has been obtained in the similar way and is given
below :

Ej* Pyx= A, [Bx, G n;, 20, + 1)+ 65, Bx, Gng+1,50)1 (AT
where A, is as given in (A.6 b) and using (A.6 b),
x,=a/(1+a)= 1-{1/Q +a)}=1-x (A7)

A3 Derivation of E11P1, E22 P2 and E33P3:

Using similar procedures as in the evaluation of E' P!, E. P, we can also
171 2

evaluate E, P}, E;,, P;. For the sake of brevity only the final espressions are
given below !

E;, Pl =A {4 (0%/113)2) r(%(nl +n,) +2) Bx, (%nl, ';'“3 +2)

= (O +2(GP /) Ix, G,y + D), (A8 2)
L, Pi= A, [Bx, (Gn,,in, +2)+26, Bx, G+ 1, Lo +1)

6% Bx, Cny +2, 1)) (A. 8b)

4 TGa+n)+d)
T @+ [ GGy

where A (A. 8¢)
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A.4 Tables of numerical results : . : _
Comparison of Bias, MSE of the sometimes pool estimators V" and V, and their relative efficiencies over the never

pool estimator V,

174

Table A.1
n=m=n=2 0=qa,= o = 9,50
BIAS MSE MSE (V,) REL. EFF.
8y, 0% 0§ s . *

v v \Y% v Vs e(V,V3)% e(V',V;;)%

10 1 10 0.00000 0.16696 — 0.97082 — 1.00000 103.0058 —
241421 0.69085 ~0.37500 1.78986 . 1.00000 1.00000 55.8704 100.0000
4.44949 0.99158 -0.37500 2.51095 1.00000 1.00000 39.8256 100.0000
- 6.46410 132735 -0.37500 3.95628 1.00000 1.00000 25.2763 >100..0000
8.47214 1.66204 -0.37500 | 5.84551 ~1.00000 -1.00000 17.1072 100.0000
10.47723 1.99616 -0.37500 8.17916 1.00000 1.00000 12.2262 100.0000

15 1 15 0.00000 0.12698 — 2.10762 . —_ 2.25000 106.7553 —
2.41421 0.56634 -0.65000 2.34918 2.17000 2.25000 95.7780 103.6866
4.44949 0.77993 -0.65000 2.77126 2.17000 2.25000 81.1905 103.6866
6.46410 1.04855 -0.65000 3.69471 2.17000 2.25000 . 60.8979 103.6866
8.47214 131631 -0.65000 4.97408 2.17000 2.25000 45.2345 103.6866
* 10.47723 1.58359 =0.65000 6.60940 2.17000 2.25000 34.0424 103.6866

20 1 20 0.00000 0.10149 — 3.78497 — 4.00000 105.6811 —
2.41421 0.47471 —0.91667 3.62924 -3.86111 4.00000 110.2159 103.5971
4.44949 0.64254 -0.91667 3.84649 3.86111 4.00000 103.9909 103.5971
6.46410 0.86639 ~-0.91667 4.41206 3.86111 4.00000 90.6607 103.5971
8.47214 1.08954 -0.91667 5.27496 - 3.86111 4.00000 75.8300 103.5971
10.47723 131225 -0.91667 6.43486 3.86111 4.00000 62.1614 103.5971
Y % - Y, | T S R y -

SOLLSILVLS TVYNLINDIINOV 40 ALTIDOS NVIAGNT THL A0 TVNYnor
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Contd ....
30 1 30 0.00000 .0.07162 — 8.70203 — 9.00000 103.4241 —
241421 0.35561 -1.43750 8.03677 8.78125 9.00000 111.9853 102.4911
4.44949 0.47496 -1.43750 7.98965 8.78125 9.00000 112.6457 102.4911
6.46410 0.64285 -1.43750 8.09664 8.78125 9.00000 111.1572 102.4911
8.47214 0.81024 ~1.43750 8.42784 8.78125 9.00000 106.7889 102.4911
10.47723 0.97724 -1.43750 . 8.98247 8.78125 9.00000 100.1951 102.4911
50 1 50 0.00000 0.04449 — 24.63239 — 25.00000 ~  101.4924 —
241421 0.23506 -2.45833 23.44346 24.69444 25.00000 106.6395 101.2374
4.44949 0.31201 - —2.45833 23.12152 24.69444 25.00000 - 108.1244 101.2374
6.46410 0.42394 —2.45833 22.75739 24.69444 25.00000 ' 109.8544 101.2374
8.47214 0.53559 -2.45833 22.54470 24.69444 25.00000 110.8908 101.2374
10.47723 0.64685 —2.45833 . 22.48219 24.69444 25.00000 111.1991 101.2374
80 1 80 0.00G00 0.02813 — 63.59564 — 64.00000 100.6358 —
2.41421 0.15531 -3.97222 62.04973 63.63272 64.00000  103.1431 100.5772
4.44949 0.20595 -3.97222 61.53839 63.63272 64.0C000 104.0001 100.5772
6.46410 0.28058 -3.97222 60.85297 63.63272 64.00000 105.1715 100.5772
8.47214 0.35510 -3.97222 60.27128 63.63272 64.00000 106.1866 100.5772
10.47723 0.42916 -3.97222 59.79182 107.0380 100.5772

63.63272

64.00000

STYNATI0Yd NOLLVIKILST HOYYT 40 NOSIIVINOOD
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n=m= 2,n3= 4, == (lp= 0.50

Table A.2

6, o% o2 A, v BIAS v v MSE v MSi (Vs) REL. EFF.
_ : V3 eViVa)% (v, V)%
1.0 1 1.0 0.00000 0.07105 — 0.46792 — 0.50000 106.8568 -
2.41421 0.57080 -0.80893 0.90480 0.91646 0.50000 55.8782 54.5576
6.46410 095447 -0.80893 2.16689 0.91646 0.50000 23.0746° 54.5576
8.47214 1.20548 ~0.80893 - 3.22963 0.91646 0.50000 15.4816 54.5576
10.47723 1.45608 —0.80893 4.54222 0.91646 0.50000 11.0078 54.5576
15 1 15  0.00000 0.03500 — 1.07764 — 1.12500 104.3953 —_
241421 0.46256 -1.23222 1.06001 - 2.05108 1.12500 106.1266 54.8493
4.44949 051183 ~1.23222 1.39599 2.05108 1.12500 80.5879 54.8493
6.46410 0.70190 -~ -1.23222 1.88664 . 2.05108 1.12500 59.6298 54.8493
8.47214 . 0.89290 -1.23222 2.56320 2.05108 1.12500 43.8904 54.8493
. 10.47723 1.08356 ~1.23222 3.42981 2.05108 1.12500 32.8007 54.8493
20 1 20 0.00000 0.01971 - 1.93702 — 2.00000 103.2517 —
2.41421 035312 -1.65317 1.64489 3.64808 2.00000 121.5891 54.8223
4.44949 0.38646 ~1.65317. 1.91321° 3.64808 2.00000 104.5366 54.8223
6.46410° 0.53712 -1.65317 2.18070 3.64808 2.00000 91.7138 54.8223
8.47214 0.68732 -1.65317 2.59840 3.64808 2.00000 76.9704 54.8223
10.47723 0.83723 =1.65317 3.16543 3.64808 2.00000 63.1826 54.8223

SOIISILV.LS TVINLINIINOV 40 ALFIDOS NVIGNI FHL 40 TYNINOr
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Contd ...
30 1 30 0.00000 0.00389 — 4.44177 — 450000  101.3109 —
241421 021254 —2.49149 3.94497 8.22428 450000 1140693 54.7161

4.44949 0.24268 —2.49149 403588 8.22428 450000  111.4998 54.7161
6.46410 034282  -2.49149 4.04804 8.22428 450000  111.1648 54.7161
8.47214 0.44270 —2.49149 4.16069 8.22428 450000  108.1551 54,7161
10.47723 0.54236 —2.49149- 337214 8.22428 450000 1029245 547161

50 1 50 0.00000  .-0.00474 — 12.48616 — 12.50000  100.1108 —
241421 0.10431 —4.16242 11.83734 22.88842 12.50000  105.5981 54.6128
4.44949 0.12040 —4.16242 11.82675 22.88842 12.50000  105.6926 54.6128
6.46410 0.17378 —4.16242 11.64191 22.88842 12.50000  107.3707 54.6128
8.47214 0.22714 —4.16242 11.51152 22.88842 12.50000  108.5869 54.6128
10.47723 0.28028 —4.16242 11.43196 22.88842 12.50000  109.3426 54.6128

80 1 80 0.00000 -0.00534 — 32.03244 — 32.00000 99.8987 -
2.41421 0.04928 —6.66463 31.39770 58.64140 32,00000  101.9183 54.5690
6.46410 0.08449 —6.66463 31.09911 58.64140 32.00000  102.8968 - 54.5690
8.47214 0.11168 —6.66463 30.88126 58.64140 32.00000  103.6227 54.5690
10.47723 - -6.66463 30.68402 58.64140 32.00000  104.2888

0.13861

54.5690

. STANATD0Yd NOLLVIWILST HOJHT 40 NOSINVIINOD
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Table A3
n1=n2=10,n3=2,a1=aq_=ap=0.50
. BIAS MSE MSE (V5) REL.EFF.

1 | o} | o} 2 v v v v ' eV, V)% eV, Vy)%
10 1 10 000000 032376 — 0.79700 — 100000  125.4699 —
344949 048015  -0.99816 087251 099977  1.00000 1146119 100.0230.

574166 058120  -—0.99816 099037  0.99977 1.00000  100.9720  100.0230

15 1 15 000000 023792 — 1.87034 — 225000  120.2988 —
3.44949 035583 149758 180982 224951 225000 1243217 1000218

574166 043035  -1.49758 181637 - 2.2495] 225000  123.8734  100.0218

20 1 20 000000  0.18790 — 3.51625 - 400000  113.7576 —
344949 028235 199696 337131 399935 400000  118.6481  100.0163

574166 034026 199696 330594 399935 400000 1209944  100.0163

30 1 30  0.00000 0.13229 — 840013 — 9.00000  107.1412 —
B 344949 019988 299564  8.15347 899917  9.00000 - 1103824  100.0093

574166 023778 299564 799303 899917 900000 1 125981  100.0093

50 1 50 000000  0.08340 — 24.20978 — 25.00000  102.8816 —
344949 0.12674° 499204  23.94211 2499900  25.00000 1044185  100.0040

574166 014412 499294  23.64744 2499900  25.00000 (1057197 100.0040

80 1 80 000000 005420 - 63.24638 — ' 6400000  101.1916 —
344949 008200  -7.98881 6277304  63.99889  64.00000 1019546 1000017

574166 0.08382  -7.98881  62.27390  63.09889 6400000 1027718  100.0017
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SUMMARY
The paper deals with the problem of estimating ’inverse of population
mean’ when coefficient of variation is known. A funnel connected with a
filter-paper to filter the bias precipitate appearing in the estimators of the
inverse of population mean is defined.
Key words : Bias precipitates, Linear variety of estimators, Mean square
error, Coefficient of variation, Normal parent.

Introduction and Notations

In various investigations, the coefficient of variation shows stability and
its value may be known accurately. The use of coefficient of variation as a
priori has been made at a great length in the estimation of mean by several
authors including Searls [4], Khan [3], Govindarajulu and Sahai [2] Gleser and
Healy [1], Singh [7] [8], among others. Sen and Gerig [S5], Sen [6] and
- Upadhyaya and Singh [14] have used the population shape parameters such
as coefficient of skewness and kurtosis as apriori in addition to coefficient of
variation in estimating the population mean.

The problem of estimation of the inverse of population mean arises in many
situations, for instance, in Econometrics and Biological sciences ; see Zellner
[15]. The conventional estimator of the inverse of population mean is the
"inverse of sample mean’. Improvements over the conventional estimator have
been made by Srivastava and Bhatnagar [13] and Singh [9] in the situations,
where population variance is known and ‘unknown. Singh et al [11] have also
improvements over conventional estimator of inverse of population mean using
a priori information on shape parameters of population such as coefficient of
skewness_and kurtosis in addition to coefficient of variation.

A method adopted by Singh and Singh [12] to filter the bias precipitates
from the estimators of inverse of population mean by using a funnel associated
with a filter-paper is given. The apparatus consists of a linear variety of
estimators and linear constraints. It would be seen that the chemicals (statistical
constants) used for bias separau()n depend on the shape parameters of population
and coefficient of variation. Howéver, in case of normal population the reactants




